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Let C be the Banach algebra of functions continuous in [0, 1], with || fllc =
MaXy<z<; | f(*)], and multiplication defined by

(F00 = [ ) gz = .

For any fe C, f*(0) = 0, n = 1, 2, 3,..., so that it is clear that a necessary
condition for f € C to generate C is that f(0) == 0, but we do not know if this
condition is sufficient.

However, let T be the Banach algebra of functions f(x) = ¥, _; @,x",
with | fllr = 3o o | @, | < oo and multiplication defined as above. We shall
show in Theorem 2 that the obvious necessary condition for fe T to
generate 7T, i.e., that £(0) £ 0, is also sufficient.

First, though, let us consider another case. Let C, be the subalgebra of C
consisting of the functions in C which vanish at zero. Clearly, a necessary
condition for f e C, to generate C, is that f does not vanish throughout any
interval [0, a], a > 0. However, this condition is not sufficient.

Consider

e—l/w

h(x) = W >

0<x<1; h0)=0.

This 4 belongs to C, and is positive except at zero. Let

e—l ®

/
hy(x) = Vo

x€(0, ©0); 5h(0) = 0.
We consider the Laplace tranform L(f) = f:’ f(x) e=** dx, and recall that
L(f*g) = L(f) L(g).
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230 GINSBERG AND NEWMAN

°°It is a well-known theorem of Boole that for any integrable function F,
JZo F(x)dx = [Z, F(x — 1/x) dx. We then have

= [ g = [ e[ (e4 )] (=),
= % f:o exp [—\/s (u2 + %)] du, (u2 = \t/zs ),
e—2Vsgl/4

= e =y (o= )
= —8_2:;*85_1/4 i exp[—+/s u?] du,

e—-2\/s

oot @ o

— e—2\/s,

so that L(A}™) = e Vs, p = 1,2, 3,.... But

N2 —1/2,—sn?

® pe—ni/re—sz dx — © g—1/zp—snc e — e-2VomE — g2V

0 VAP RVEF !
so that

2
*n . ne—" [®
h(x) = N x8E’
and thus
*n ne—n’/m *
=T, 0<x<L hT@=0.

The space C, , considered as a subset of L2?[0, 1], is dense in L2[0, 1] and
| flle, = I flle. By an application of Miintz" theorem [1, p. 43],
{(e—"/7)j(x3/2)}=_, is not complete in L2[0, 1]; thus, it is certainly not complete
in C, , and therefore 4 does not generate C, .

We shall now show that fe T generates T if and only if f(0) 7= 0. To do
this we must first consider another class of Banach algebras.

Given a sequence A = {\,}, A, > 0,foralln, A, = 1, A, ,/A, =6, < 1/ns,
e > 0, 5, monotone decreasing, let R, be the algebra of power series W(z) =
S @z, with | Wl = 3", A, la, | < oc. We note that A, = [Try 8.
Also, R, 1s a radical algebra, so that all elements of R, have zero as the only
point of their spectrum. Our main theorem will be that W(z) = Y. , a,z" € R,
generates R, if and only if a;, =~ 0.
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LemMmA 1.

A“1t1+"‘+°‘ets+"“" Ani-1)

[TE, (A )% oy

where
38
ti > l’ [ = 1: 2x~"9 5, Z & :j’

and where all of t; , I, «; , n, j are positive integers.

Proof. Ift;, =1 i=1, 2,..,s, then we have equality. If we increase ¢;
by 1, then the ratio of the new left-hand side to the original one is

(Au1t1+"‘+a3t3+ai+n—j )( Ati )"‘i’

Aa;,tl+‘-~+axt,+n—j At‘+1
8u1tl+---+a,t,+n—;' 8¢1t1+"'+cx’tﬂ+a,~+n—f 1
- . ~ s
(8¢

because 8, is monotone decreasing. The assertion follows by induction.
LeMMA 2. If V(2) = X, @nz™ || V], = K, then

KA i)

Ay

Proof. We can write V(2) = X._, by fu(z), where b,, = a,A/K and
fl2) = Kz™/A,, s0 that 3 _ | by | =1 and [ fully = K, m = L1+ 1,...
Then,

27Vl <

Il ZE N LY

.]! o o Loy a,
.—..a’btll ...bt: tl...ft:
g+

gt ag=i o!
. aytyte e tagt
=g Y ;.'_{_.!.__a' e ::Kj(XZT:;_-:_(:\_S;':’
agteebage=i Tt st ty ts
and
lz2=Vi ), < Z __'L | By, |-+ | by |%Ka'w
T RN R SO A

Y .
< Z ’-{..- o.! [ bh }"‘1 o I bt: |%Kj An+(l_1)3 (by Lemma 1).

ager =i 1 &y

— K
Ay



232 GINSBERG AND NEWMAN

Lemvma 3. IfW(2) =z + 3, anz™ 1 > 1)e + 1, then || Wn |, < AyelPlh-1
Jorn > (A)1/0-De1,

Proof. Let V(z) = X._, a,z" || V|, = K. Then,
[

zn—J | 44 [

I W =iz + V)

A

<

OB

<.
i
=)

") zm-ivi ),
(,)

< (7 Krg;
<) (J) —O:L;—i—l)— (by Lemma 2)

j=1

n

_ )‘n n+(l—1)1 Ki
D] e

n

n! 8y e 3n+(}—1)i—1 If
n,'=o n—j)! (Al)] .]'

i n! (Sn)(l—l):i &
L= o i

J=

<A

7 nJ Kj
< & Ty T

=AY

j=0

( pl—(1-1)e ):: Ki
A J!

n f)

<Ay ji, (for n > (\-1/a-De-1y
X

< MoK = A WL,

LEMMA 4. If W(z) = z+ 3, ,a,z" is in Ry, I > 1/e + 1, and
(W12 = 3o, bi™zn, where W-Y(zZ) is the formal inverse of W(z), then
| B4 | < (CN2-tm=De)/)y, | for some constant C.

Proof. Let Wplz) = z + 2,, L @,z" N > m. Since Wy'(0) # 0, (W ()™
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is analytic in a small enough disc about the origin, bounded, say, by C’.
If we let (Wi'@)™ = Yy ™z, then b™ = ™, i=m, m + 1,..,
N -+ m — 1. Thus,

B — o 1 J‘ Wy , _ 1 f z"Wy'(z) dz

N T o N T o WRH(z)
Since Y,_; A, | @,| < 00, one has | a, | << M/A,, for some constant M. Now,

IZI"

N N
[ W@ Z |2+ Y} auz | = |z — ) |a,llzi" > |Z|—MZ

n=1 n=1

and

n|zl"1

<1+MZ

IWN(z)|—]1+znazn—1

n

We replace C” by the circle I, about the origin, of radius

b

L ( Ay )1/(N—1)
= (¥

because, as we show below, r — M ZL,(r"/)\n) >0, so that Wx(z) £ 0
inside and on I" (except at the origin). We then obtain

m+1 1 M - nr'n—1~
|b(m)l<Lf |Z[m|WN(Z)Id ’ (+ ngl )\n )
VS l TTImRET Xy wa
(-3
n=l A“
N n-1
rm—N(1+MZ = )
n=1 n
- N pn-1yN+1
(1- MY )
Now,

_ AN 1/(N-1) i 1/(N-1) N Fm—1 Desm N2—im~1)e
r= ( N2 ) < (Nz(N . 1)|5) s F N — oy = )\N s
so that

(zes)l—l

r<<2 (——]%—)E, and ril < N
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By examining the ratio of successive summands of ZL, (r*2,), we see
that the summands decrease first and then increase, so that

o1 2-2 n- Nt

N
EAnzz A

ne=l An n=2l—1

-1 21-3 21—2
< (! — 1) max (r— r—) +(N—21+2)max(—;—-—,%)
211

A A
(2ee)l—1 (265)21——3
< l'_ 2
(! — 1) max [ N N ]
_ (Zec)21—2 ~1—
+ (N — 21 + 2) max [——N%H : N2]
C (l — 1)(2ee 21-3 (2es)2l—2
< 22, where C, = + .
= 'N ! )‘21—2 A21—1
Similarly,
N ppn— It 1
El x <(N—1I1+ l)max( x ’7)
1(2es)r 1
<WN—-—I!+1Dmax |———,—
€\l—1
<G, where C, = 1(2;) .
1
Hence,
b(m) - 2esm~2—(m—l)e(1 + MC2) - (-:3]\,2_(1”_1)€
N ~ )\ 1 B MCI)N+1 AN s
(1-7F

where Cy = 4e(1 + MC,) eMC1,

LEMMA 5. f(z) = ZLI a,z" generates R, if a; # 0.

Proof. Let D be the closed sub-algebra generated by f. The spectrum of f
consists of the point 0 and f—' is analytic at 0 (because a, =% 0). Hence
FY(f(2)) belongs to D (2,p.78]. But f~'(f(z)) = z and z generates R,;
thus f(z) generates R, .

THEOREM 1. W(z) = S . a,z" € R, generates R, if and only if a, # 0.

Proof. 1If a; = 0, then all powers of W also have zero as their coefficient
of zand W does not generate R, .
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If a, # 0, we can assume without loss of generality that @, = 1.

Clearly, Wy(z) = z + Y Caz® | = [1/e] + 2, is generated by W1(z),
for some {c,}>_, . Consider (W @)™ = X, b™z", m > 4/e + 1, and let
/(@) = Ta_p bz, Then

W W2 — fu(Wa@)a

>, W)

n=N+1

IR R AR

n=N-+1

x© n2—(m—1)c

<Cs Y A, @ Piia-1 (for N > (A)-/i-be-)
n=N+1 n
< C3eIlW1I|A—1 i Lz i
n=N+1 n

which can be made arbitrarily small, so that fy(W;(z) — [W X (Wy(2)]™ = z™.
Hence, {z™ }m [4/ejrz 18 generated by1 W, and therefore, by W. Thus,
W(z) — Z" e+ W2Z" = z + Zn_g a,z" is generated by W. But
z+ 2[4/ a,z" generates R,, by Lemma 5, so that W does the same.
This completes the proof.
Let R be the algebra obtained by setting A, = 1/(n — 1)!

THEOREM 2. f(x) = X o a.x" € T generates T if and only if f(0) # 0.

Proof. If f(x) = Y, oa.x"e T, then ¥, ,n!a,z"*te R. Consider the
transformation L from 7T into R, given by L(T,_o a.x") = Yo _on! a,z"*.
We have L(x") = n!z"! = |, o X"e~®/% dx, so that L(x") equals the Laplace
transform of x», 0 < x << oo. Hence, if P and Q are polynomlals L(P * Q) ==
L(P) L(Q) and, since, L(T ..o @:X") = limy,o L(Znﬂ0 a,x™) (in R) it follows
that L(f x g) = L(f) L(g), for all f, g € T. Furthermore, || L(Y o @x")|x =
S ol @yl = || To @X" ||z, 50 that L is an isometric isomorphism from T
onto R. By Theorem 1, L(f) = ¥, _; a,_1(n — 1)! z* generates R if and
only if a, = 0, so that f generates 7T if and only if g, = 0, i.e., if and only
if £(0) £ 0.
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