Generators of Certain Radical Algebras

Jonathan I. Ginsberg* and Donald J. Newman ${ }^{\dagger}$

Belfer Graduate School of Sciences, Yeshiva University, New York, New York, 10033
Received April 7, 1969

Let C be the Banach algebra of functions continuous in [0, 1], with $\|f\|_{c}=$ $\max _{0 \leqslant x \leqslant 1}|f(x)|$, and multiplication defined by

$$
(f * g)(x)=\int_{0}^{x} f(t) g(x-t) d t
$$

For any $f \in C, f^{* n}(0)=0, n=1,2,3, \ldots$, so that it is clear that a necessary condition for $f \in C$ to generate C is that $f(0) \neq 0$, but we do not know if this condition is sufficient.

However, let T be the Banach algebra of functions $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$, with $\|f\|_{T}=\sum_{n=0}^{\infty}\left|a_{n}\right|<\infty$ and multiplication defined as above. We shall show in Theorem 2 that the obvious necessary condition for $f \in T$ to generate T, i.e., that $f(0) \neq 0$, is also sufficient.

First, though, let us consider another case. Let C_{0} be the subalgebra of C consisting of the functions in C which vanish at zero. Clearly, a necessary condition for $f \in C_{0}$ to generate C_{0} is that f does not vanish throughout any interval [$0, a$], $a>0$. However, this condition is not sufficient.

Consider

$$
h(x)=\frac{e^{-1 / x}}{\sqrt{ } \pi x^{3 / 2}}, \quad 0<x \leqslant 1 ; \quad h(0)=0
$$

This h belongs to C_{0} and is positive except at zero. Let

$$
h_{1}(x)=\frac{e^{-1 / x}}{\sqrt{ } \pi x^{3 / 2}}, \quad x \in(0, \infty) ; \quad h_{1}(0)=0
$$

We consider the Laplace tranform $L(f)=\int_{0}^{\infty} f(x) e^{-s x} d x$, and recall that $L(f * g)=L(f) L(g)$.

[^0]It is a well-known theorem of Boole that for any integrable function F, $\int_{-\infty}^{\infty} F(x) d x=\int_{-\infty}^{\infty} F(x-1 / x) d x$. We then have

$$
\begin{aligned}
L\left(h_{1}\right)=\int_{0}^{\infty} \frac{e^{-1 / x} e^{-s x}}{\sqrt{ } \pi x^{3 / 2}} d x & =\frac{1}{\sqrt{ } \pi} \int_{-\infty}^{\infty} \exp \left[-\left(t^{2}+\frac{s}{t^{2}}\right)\right] d t, \quad\left(t^{2}=\frac{1}{x}\right) \\
& =\frac{s^{1 / 4}}{\sqrt{ } \pi} \int_{-\infty}^{\infty} \exp \left[-\sqrt{ } s\left(u^{2}+\frac{1}{u^{2}}\right)\right] d u, \quad\left(u^{2}=\frac{t^{2}}{\sqrt{ } s}\right) \\
& =\frac{e^{-2 \sqrt{ } s} s^{1 / 4}}{\sqrt{ } \pi} \int_{-\infty}^{\infty} \exp \left[-\sqrt{ } s\left(u-\frac{1}{u}\right)^{2}\right] d u \\
& =\frac{e^{-2 \sqrt{ } s} s^{1 / 4}}{\sqrt{ } \pi} \int_{-\infty}^{\infty} \exp \left[-\sqrt{ } s u^{2}\right] d u \\
& =\frac{e^{-2 \sqrt{ } s}}{\sqrt{ } \pi} \int_{-\infty}^{\infty} \exp \left[-v^{2}\right] d v, \quad\left(v^{2}=\sqrt{ } s u^{2}\right) \\
& =e^{-2 \sqrt{ } s}
\end{aligned}
$$

so that $L\left(h_{1}^{* n}\right)=e^{-2 n \sqrt{ } s}, n=1,2,3, \ldots$ But

$$
\int_{0}^{\infty} \frac{n e^{-n^{2} / x} e^{-s x}}{\sqrt{\pi x^{3 / 2}}} d x=\int_{0}^{\infty} \frac{e^{-1 / x} e^{-s n^{2} x}}{\sqrt{\pi x^{3 / 2}}} d x=e^{-2 \sqrt{s n^{2}}}=e^{-2 n \sqrt{ } s}
$$

so that

$$
h_{1}^{* n}(x)=\frac{n e^{-n^{2} / x}}{\sqrt{ } \pi x^{3 / 2}}
$$

and thus

$$
h^{* n}(x)=\frac{n e^{-n^{2} / x}}{\sqrt{ } \pi x^{3 / 2}}, \quad 0<x \leqslant 1 ; \quad h^{* n}(0)=0
$$

The space C_{0}, considered as a subset of $L^{2}[0,1]$, is dense in $L^{2}[0,1]$ and $\|f\|_{c_{0}} \geqslant\|f\|_{L^{2}}$. By an application of Müntz' theorem [1, p. 43], $\left\{\left(e^{-n^{2} / x}\right) /\left(x^{3 / 2}\right)\right\}_{n=1}^{\infty}$ is not complete in $L^{2}[0,1]$; thus, it is certainly not complete in C_{0}, and therefore h does not generate C_{0}.

We shall now show that $f \in T$ generates T if and only if $f(0) \neq 0$. To do this we must first consider another class of Banach algebras.

Given a sequence $\lambda=\left\{\lambda_{n}\right\}, \lambda_{n}>0$, for all $n, \lambda_{1}=1, \lambda_{n+1} / \lambda_{n}=\delta_{n}<1 / n^{\epsilon}$, $\epsilon>0, \delta_{n}$ monotone decreasing, let R_{λ} be the algebra of power series $W(z)=$ $\sum_{n=1}^{\infty} a_{n} z^{n}$, with $\|W\|_{\lambda}=\sum_{n=1}^{\infty} \lambda_{n}\left|a_{n}\right|<\infty$. We note that $\lambda_{n}=\prod_{i=1}^{n-1} \delta_{i}$. Also, R_{λ} is a radical algebra, so that all elements of R_{λ} have zero as the only point of their spectrum. Our main theorem will be that $W(z)=\sum_{n=1}^{\infty} a_{n} z^{n} \in R_{\lambda}$ generates R_{λ} if and only if $a_{1} \neq 0$.

Lemma 1.

$$
\frac{\lambda_{\alpha_{1} t_{1}+\cdots+\alpha_{g} t_{8}+n-j}}{\prod_{k=1}^{s}\left(\lambda_{t_{k}}\right)^{\alpha_{k}}} \leqslant \frac{\lambda_{n+(l-1) j}}{\left(\lambda_{l}\right)^{j}}
$$

where

$$
t_{i} \geqslant l, \quad i=1,2, \ldots, s, \quad \sum_{l=1}^{s} \alpha_{i}=j
$$

and where all of $t_{i}, l, \alpha_{i}, n, j$ are positive integers.
Proof. If $t_{i}=l, i=1,2, \ldots, s$, then we have equality. If we increase t_{i} by 1 , then the ratio of the new left-hand side to the original one is

$$
\begin{aligned}
& \left(\frac{\lambda_{\alpha_{1} t_{1}+\cdots+\alpha_{g} t_{s}+\alpha_{i}+n-j}}{\lambda_{\alpha_{i}, t_{1}+\cdots+\alpha_{s} t_{s}+n-j}}\right)\left(\frac{\lambda_{t_{i}}}{\lambda_{t_{i}+1}}\right)^{\alpha_{i}}, \\
& \quad=\frac{\delta_{\alpha_{1} t_{1}+\cdots+\alpha_{s} t_{8}+n-j} \cdots \delta_{\alpha_{1} t_{1}+\cdots+\alpha_{s} t_{s}+\alpha_{i}+n-j}}{\left(\delta_{t_{i}}\right)^{\alpha_{i}}} \leqslant 1
\end{aligned}
$$

because δ_{n} is monotone decreasing. The assertion follows by induction.
Lemma 2. If $V(z)=\sum_{m=l}^{\infty} a_{m} z^{m},\|V\|_{\lambda}=K$, then

$$
\left\|z^{n-j} V^{j}\right\|_{\lambda} \leqslant \frac{K^{j} \lambda_{n+(l-1) j}}{\left(\lambda_{l}\right)^{j}}
$$

Proof. We can write $V(z)=\sum_{m=l}^{\infty} b_{m} f_{m}(z)$, where $b_{m}=a_{m} \lambda_{m} / K$ and $f_{m}(z)=K z^{m} / \lambda_{m}$ so that $\sum_{m=l}^{\infty}\left|b_{m}\right|=1$ and $\left\|f_{m}\right\|_{\lambda}=K, m=l, l+1, \ldots$

Then,

$$
\begin{aligned}
& z^{n-j} V^{j}= z^{n-j} \\
& \sum_{\alpha_{1}+\cdots+\alpha_{s}=j} \frac{j!}{\alpha_{1}!\cdots \alpha_{s}!} b_{t_{1}}^{\alpha_{1}} \cdots b_{t_{s}}^{\alpha_{s}} f_{t_{1}}^{\alpha_{1}} \cdots f_{t_{s}}^{\alpha_{s}} \\
&=z^{n-j} \sum_{\alpha_{1}+\cdots+\alpha_{s}=j} \frac{j!}{\alpha_{1}!\cdots \alpha_{s}!} b_{t_{1}}^{\alpha_{1}} \cdots b_{t_{s}}^{\alpha_{s}} K^{j} \frac{z^{\alpha_{1} t_{1}+\cdots+\alpha_{s} t_{s}}}{\left(\lambda_{t_{1}}\right)^{\alpha_{1}} \cdots\left(\lambda_{t_{s}}\right)^{\alpha_{s}}},
\end{aligned}
$$

and

$$
\begin{aligned}
\left\|z^{n-j} V^{j}\right\|_{\lambda} & \leqslant \sum_{\alpha_{1}+\cdots+\alpha_{s}=j} \frac{j!}{\alpha_{1}!\cdots \alpha_{s}!}\left|b_{t_{1}}\right|^{\alpha_{1}} \cdots\left|b_{t_{s}}\right|^{\alpha_{s}} K^{j} \frac{\lambda_{\alpha_{1 t_{1}+\cdots+\alpha_{s} t_{s}+n-j}}^{\left(\lambda_{t_{1}}\right)^{\alpha_{1}} \cdots\left(\lambda_{t_{s}}\right)^{\alpha_{s}}}}{} \\
& \leqslant \sum_{\alpha_{1}+\cdots+\alpha_{s}=j} \frac{j!}{\alpha_{1}!\cdots \alpha_{s}!}\left|b_{t_{1}}\right|^{\alpha_{1}} \cdots\left|b_{t_{s}}\right|^{\alpha_{s}} K^{j} \frac{\lambda_{n+(l-1) j}}{\left(\lambda_{l}\right)^{j}} \quad \text { (by Lemma 1). } \\
& =\frac{K^{j} \lambda_{n+(l-1) j}}{\left(\lambda_{l}\right)^{j}}
\end{aligned}
$$

Lemma 3. If $W(z)=z+\sum_{m=l}^{\infty} a_{m} z^{m}, l>1 / \epsilon+1$, then $\left\|W^{n}\right\|_{\lambda}<\lambda_{n} e^{\|W\|_{\lambda}-1}$ for $n>\left(\lambda_{l}\right)^{-1 /(l-1) \epsilon-1}$.

Proof. Let $V(z)=\sum_{n=l}^{\infty} a_{n} z^{n},\|V\|_{\lambda}=K$. Then,

$$
\begin{aligned}
&\left\|W^{n}\right\|_{\lambda}=\left\|(z+V)^{n}\right\|_{\lambda}=\left\|\sum_{j=0}^{n}\binom{n}{j} z^{n-j} V^{n}\right\|_{\lambda} \\
& \leqslant \sum_{j=0}^{n}\binom{n}{j}\left\|z^{n-j} V^{j}\right\|_{\lambda} \\
& \leqslant \sum_{j=1}^{n}\binom{n}{j} \frac{K^{j} \lambda_{n+(l-1) j}}{\left(\lambda_{l}\right)^{j}} \quad \text { (by Lemma 2) } \\
&=\lambda_{n} \sum_{j=0}^{n} \frac{n!}{(n-j)!} \frac{\lambda_{n+(l-1) j}}{\left(\lambda_{l}\right)^{j} \lambda_{n}} \frac{K^{j}}{j!} \\
&=\lambda_{n} \sum_{j=0}^{n} \frac{n!}{(n-j)!} \frac{\delta_{n} \cdots \delta_{n+(l-1) j-1}}{\left(\lambda_{l}\right)^{j}} \frac{K^{j}}{j!} \\
&<\lambda_{n} \sum_{j=0}^{n} \frac{n!}{(n-j)!} \frac{\left(\delta_{n}\right)^{(l-1) j}}{\left(\lambda_{l}\right)^{j}} \frac{K^{j}}{j!} \\
&<\lambda_{n} \sum_{j=0}^{n} \frac{n^{j}}{n^{(l-1) \epsilon j}\left(\lambda_{l}\right)^{j}} \frac{K^{j}}{j!} \\
&=\lambda_{n} \sum_{j=0}^{n}\left(\frac{n^{1-(l-1) \epsilon}}{\lambda_{l}}\right)^{j} \frac{K^{j}}{j!} \\
&<\lambda_{n} \sum_{j=0}^{n} \frac{K^{j}}{j!} \\
&<\lambda_{n} e^{K}=\lambda_{n} e^{\left(\left\|W_{\|}\right\| \lambda-1\right.} \\
&(\text { for } \\
& n>\left(\lambda_{l}-1 /(l-1) \epsilon-1\right)
\end{aligned}
$$

Lemma 4. If $W(z)=z+\sum_{n=l}^{\infty} a_{n} z^{n}$ is in $R_{\lambda}, l>1 / \epsilon+1$, and $\left(W^{-1}(z)\right)^{m}=\sum_{n=m}^{\infty} b_{n}^{(m)} z^{n}$, where $W^{-1}(z)$ is the formal inverse of $W(z)$, then $\left|b_{N}^{(m)}\right|<\left(C N^{2-(m-1) \epsilon}\right) / \lambda_{N}$, for some constant C.

Proof. Let $W_{N}(z)=z+\sum_{n=l}^{N} a_{n} z^{n}, N>m$. Since $W_{N}{ }^{\prime}(0) \neq 0,\left(W_{N}^{-1}(z)\right)^{m}$
is analytic in a small enough disc about the origin, bounded, say, by C^{\prime}. If we let $\left(W_{N}^{-1}(z)\right)^{m}=\sum_{n=m}^{\infty} c_{n}^{(m)} z^{n}$, then $b_{i}^{(m)}=c_{i}^{(m)}, i=m, m+1, \ldots$, $N+m-1$. Thus,

$$
b_{N}^{(m)}=c_{N}^{(m)}=\frac{1}{2 \pi i} \int_{C^{\prime}} \frac{\left[W_{N}^{-1}(z)\right]^{m}}{z^{N+1}} d z=\frac{1}{2 \pi i} \int_{C^{\prime}} \frac{z^{m} W_{N^{\prime}}(z) d z}{W_{N}^{N+1}(z)} .
$$

Since $\sum_{n=l}^{\infty} \lambda_{n}\left|a_{n}\right|<\infty$, one has $\left|a_{n}\right| \leqslant M / \lambda_{n}$, for some constant M. Now,

$$
\left|W_{N}(z)\right| \geqslant\left|z+\sum_{n=l}^{N} a_{n} z^{n}\right| \geqslant|z|-\sum_{n=l}^{N}\left|a_{n}\right||z|^{n} \geqslant|z|-M \sum_{n=l}^{N} \frac{|z|^{n}}{\lambda_{n}},
$$

and

$$
\left|W_{N}^{\prime}(z)\right|=\left|1+\sum_{n=l}^{N} n a_{n} z^{n-1}\right| \leqslant 1+M \sum_{n=l}^{N} \frac{n|z| n-1}{\lambda_{n}} .
$$

We replace $C^{\prime \prime}$ by the circle Γ, about the origin, of radius

$$
r=\left(\frac{\lambda_{N}}{N^{2}}\right)^{1 /(N-1)}
$$

because, as we show below, $r-M \sum_{n=l}^{N}\left(r^{n} / \lambda_{n}\right)>0$, so that $W_{N}(z) \neq 0$ inside and on Γ (except at the origin). We then obtain

$$
\begin{aligned}
\left|b_{N}^{(m)}\right| \leqslant \frac{1}{2 \pi} \int_{C} \frac{|z| m\left|W_{N}^{\prime}(z)\right|}{\left|W_{N}(z)\right|^{N+1}} d z & \leqslant \frac{r^{m+1}\left(1+M \sum_{n=l}^{N} \frac{n r^{n-1}}{\lambda_{n}}\right)}{\left(r-M \sum_{n=l}^{N} \frac{r^{n}}{\lambda_{n}}\right)^{N+1}} \\
& =\frac{r^{m-N}\left(1+M \sum_{n=l}^{N} \frac{n r^{n-1}}{\lambda_{n}}\right)}{\left(1-M \sum_{n=l}^{N} \frac{r^{n-1}}{\lambda_{n}}\right)^{N+1}} .
\end{aligned}
$$

Now,

$$
r=\left(\frac{\lambda_{N}}{N^{2}}\right)^{1 /(N-1)} \leqslant\left(\frac{1}{N^{2}(N-1)!}\right)^{1 /(N-1)}, \quad r^{m-N}=\frac{r^{m-1}}{r^{N-1}} \leqslant \frac{2 e^{\epsilon m} N^{2-(m-1) \epsilon}}{\lambda_{N}},
$$

so that

$$
r<2\left(\frac{e}{N}\right)^{\epsilon}, \quad \text { and } \quad r^{l-1}<\frac{\left(2 e^{\epsilon}\right)^{l-1}}{N}
$$

By examining the ratio of successive summands of $\sum_{n=l}^{N}\left(r^{n-1} / \lambda_{n}\right)$, we see that the summands decrease first and then increase, so that

$$
\begin{aligned}
\sum_{n=l}^{N} \frac{r^{n-1}}{\lambda_{n}}= & \sum_{n=l}^{2 l-2} \frac{r^{n-1}}{\lambda_{n}}+\sum_{n=2 l-1}^{N} \frac{r^{n-1}}{\lambda_{n}} \\
\leqslant & (l-1) \max \left(\frac{r^{l-1}}{\lambda_{l}}, \frac{r^{2 l-3}}{\lambda_{2 l-2}}\right)+(N-2 l+2) \max \left(\frac{r^{2 l-2}}{\lambda_{2 l-1}}, \frac{1}{N^{2}}\right) \\
\leqslant & (l-1) \max \left[\frac{\left(2 e^{\epsilon}\right)^{l-1}}{N \lambda_{l}}, \frac{\left(2 e^{\epsilon}\right)^{2 l-3}}{N^{2-\epsilon} \lambda_{2 l-2}}\right] \\
& +(N-2 l+2) \max \left[\frac{\left(2 e^{\epsilon}\right)^{2 l-2}}{N^{2} \lambda_{2 l-1}}, \frac{1}{N^{2}}\right] \\
\leqslant & \frac{C_{1}}{N}, \quad \text { where } \quad C_{1}=\frac{(l-1)\left(2 e^{\epsilon}\right)^{2 l-3}}{\lambda_{2 l-2}}+\frac{\left(2 e^{\epsilon}\right)^{2 l-2}}{\lambda_{2 l-1}}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\sum_{n=l}^{N} \frac{n r^{n-1}}{\lambda_{n}} & \leqslant(N-l+1) \max \left(\frac{l r^{l-1}}{\lambda_{l}}, \frac{1}{N}\right) \\
& \leqslant(N-l+1) \max \left[\frac{l\left(2 e^{\epsilon}\right)^{l-1}}{N \lambda_{l}}, \frac{1}{N}\right] \\
& \leqslant C_{2}, \quad \text { where } \quad C_{2}=\frac{l\left(2 e^{\epsilon}\right)^{l-1}}{\lambda_{l}}
\end{aligned}
$$

Hence,

$$
b_{N}^{(m)} \leqslant \frac{2 e^{\epsilon m_{N}-(m-1) \epsilon}\left(1+M C_{2}\right)}{\lambda_{N}\left(1-\frac{M C_{1}}{N}\right)^{N+1}}<\frac{C_{3} N^{2-(m-1) \epsilon}}{\lambda_{N}}
$$

where $C_{3}=4 e^{\epsilon m}\left(1+M C_{2}\right) e^{M C_{1}}$.
Lemma 5. $f(z)=\sum_{n=1}^{N} a_{n} z^{n}$ generates R_{λ} if $a_{1} \neq 0$.
Proof. Let D be the closed sub-algebra generated by f. The spectrum of f consists of the point 0 and f^{-1} is analytic at 0 (because $a_{1} \neq 0$). Hence $f^{-1}(f(z))$ belongs to $D\left(2\right.$, p. 78]. But $f^{-1}(f(z))=z$ and z generates R_{λ}; thus $f(z)$ generates R_{λ}.

Theorem 1. $W(z)=\sum_{n=1}^{\infty} a_{n} z^{n} \in R_{\lambda}$ generates R_{λ} if and only if $a_{1} \neq 0$.
Proof. If $a_{1}=0$, then all powers of W also have zero as their coefficient of z and W does not generate R_{λ}.

If $a_{1} \neq 0$, we can assume without loss of generality that $a_{1}=1$.
Clearly, $W_{1}(z)=z+\sum_{n=l}^{\infty} c_{n} z^{n}, l=[1 / \epsilon]+2$, is generated by $W(z)$, for some $\left\{c_{n}\right\}_{n=l}^{\infty}$. Consider $\left(W_{1}^{-1}(z)\right)^{m}=\sum_{n=m}^{\infty} b_{n}^{(m)} z^{n}, m \geqslant 4 / \epsilon+1$, and let $f_{N}(z)=\sum_{n=m}^{N} b_{n}^{(m)} z^{n}$. Then

$$
\begin{aligned}
& \left\|\left[W_{1}^{-1}\left(W_{1}(z)\right)\right]^{m}-f_{N}\left(W_{1}(z)\right)\right\|_{\lambda} \\
& \quad=\left\|\sum_{n=N+1}^{\infty} b_{n}^{(m)} W_{1}^{n}(z)\right\|_{\lambda} \\
& \quad \leqslant \sum_{n=N+1}^{\infty}\left|b_{n}^{(m)}\right|\left\|W_{1}^{n}(z)\right\|_{\lambda} \\
& \quad<C_{3} \sum_{n=N+1}^{\infty} \frac{n^{2-(m-1) \epsilon}}{\lambda_{n}} \lambda_{n} e^{\| W_{1} \mid \lambda-1} \quad\left(\text { for } N>\left(\lambda_{l}\right)^{-1 /(l-1) \epsilon-1)}\right) \\
& \quad \leqslant C_{3} e^{\| W_{1} \mid \lambda-1} \sum_{n=N+1}^{\infty} \frac{1}{n^{2}},
\end{aligned}
$$

which can be made arbitrarily small, so that $f_{N}\left(W_{1}(z) \rightarrow\left[W_{1}^{-1}\left(W_{1}(z)\right)\right]^{n}=z^{m}\right.$. Hence, $\left\{z^{m}\right\}_{m=[4 / \epsilon]+2}^{\infty}$ is generated by W_{1} and therefore, by W. Thus, $W(z)-\sum_{n=[4 / / \epsilon]+2}^{\infty} a_{n} z^{n}=z+\sum_{n=2}^{[4 / \epsilon+1} a_{n} z^{n}$ is generated by W. But $z+\sum_{n=2}^{[4 / \epsilon+1+1} a_{n} z^{n}$ generates R_{λ}, by Lemma 5, so that W does the same. This completes the proof.

Let R be the algebra obtained by setting $\lambda_{n}=1 /(n-1)$!
Theorem 2. $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \in T$ generates T if and only if $f(0) \neq 0$.
Proof. If $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n} \in T$, then $\sum_{n=0}^{\infty} n!a_{n} z^{n+1} \in R$. Consider the transformation L from T into R, given by $L\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=\sum_{n=0}^{\infty} n!a_{n} z^{n+1}$. We have $L\left(x^{n}\right)=n!z^{n+1}=\int_{0}^{\infty} x^{n} e^{-x / z} d x$, so that $L\left(x^{n}\right)$ equals the Laplace transform of $x^{n}, 0 \leqslant x<\infty$. Hence, if P and Q are polynomials, $L(P * Q)=$ $L(P) L(Q)$ and, since, $L\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)=\lim _{N \rightarrow \infty} L\left(\sum_{n=0}^{N} a_{n} x^{n}\right)$ (in R), it follows that $L(f * g)=L(f) L(g)$, for all $f, g \in T$. Furthermore, $\left\|L\left(\sum_{n=0}^{\infty} a_{n} x^{n}\right)\right\|_{R}=$ $\sum_{n=0}^{\infty}\left|a_{n}\right|=\left\|\sum_{n=0}^{\infty} a_{n} x^{n}\right\|_{T}$, so that L is an isometric isomorphism from T onto R. By Theorem $1, L(f)=\sum_{n=1}^{\infty} a_{n-1}(n-1)!z^{n}$ generates R if and only if $a_{0} \neq 0$, so that f generates T if and only if $a_{0} \neq 0$, i.e., if and only if $f(0) \neq 0$.

References

1. N. I. Achieser, "Theory of Approximation." Ungar, New York, 1956.
2. Lynn H. Loomis, "An Introduction to Abstract Harmonic Analysis." Van Nostrand, Princeton, New Jersey, 1953.

[^0]: * Part of a doctoral thesis at Yeshiva University.
 ${ }^{\dagger}$ Sponsored by NSF GP 7504.

