JOURNAL OF APPROXIMATION THEORY 3, 229-235 (1970)

Generators of Certain Radical Algebras

JONATHAN I. GINSBERG* AND DONALD J. NEWMAN[†]

Belfer Graduate School of Sciences, Yeshiva University, New York, New York, 10033 Received April 7, 1969

Let C be the Banach algebra of functions continuous in [0, 1], with $||f||_C = \max_{0 \le x \le 1} |f(x)|$, and multiplication defined by

$$(f * g)(x) = \int_0^x f(t) g(x - t) dt.$$

For any $f \in C$, $f^{*n}(0) = 0$, n = 1, 2, 3,..., so that it is clear that a necessary condition for $f \in C$ to generate C is that $f(0) \neq 0$, but we do not know if this condition is sufficient.

However, let T be the Banach algebra of functions $f(x) = \sum_{n=0}^{\infty} a_n x^n$, with $||f||_T = \sum_{n=0}^{\infty} |a_n| < \infty$ and multiplication defined as above. We shall show in Theorem 2 that the obvious necessary condition for $f \in T$ to generate T, i.e., that $f(0) \neq 0$, is also sufficient.

First, though, let us consider another case. Let C_0 be the subalgebra of C consisting of the functions in C which vanish at zero. Clearly, a necessary condition for $f \in C_0$ to generate C_0 is that f does not vanish throughout any interval [0, a], a > 0. However, this condition is not sufficient.

Consider

$$h(x) = \frac{e^{-1/x}}{\sqrt{\pi} x^{3/2}}, \quad 0 < x \leq 1; \quad h(0) = 0.$$

This h belongs to C_0 and is positive except at zero. Let

$$h_1(x) = \frac{e^{-1/x}}{\sqrt{\pi} x^{3/2}}, \quad x \in (0, \infty); \quad h_1(0) = 0.$$

We consider the Laplace transform $L(f) = \int_0^\infty f(x) e^{-sx} dx$, and recall that L(f * g) = L(f) L(g).

^{*} Part of a doctoral thesis at Yeshiva University.

[†] Sponsored by NSF GP 7504.

It is a well-known theorem of Boole that for any integrable function F, $\int_{-\infty}^{\infty} F(x) dx = \int_{-\infty}^{\infty} F(x - 1/x) dx$. We then have

$$\begin{split} L(h_1) &= \int_0^\infty \frac{e^{-1/x} e^{-sx}}{\sqrt{\pi} \, x^{3/2}} \, dx = \frac{1}{\sqrt{\pi}} \int_{-\infty}^\infty \exp\left[-\left(t^2 + \frac{s}{t^2}\right)\right] \, dt, \qquad \left(t^2 = \frac{1}{x}\right), \\ &= \frac{s^{1/4}}{\sqrt{\pi}} \int_{-\infty}^\infty \exp\left[-\sqrt{s} \left(u^2 + \frac{1}{u^2}\right)\right] \, du, \ \left(u^2 = \frac{t^2}{\sqrt{s}}\right), \\ &= \frac{e^{-2\sqrt{s}} s^{1/4}}{\sqrt{\pi}} \int_{-\infty}^\infty \exp\left[-\sqrt{s} \left(u - \frac{1}{u}\right)^2\right] \, du, \\ &= \frac{e^{-2\sqrt{s}} s^{1/4}}{\sqrt{\pi}} \int_{-\infty}^\infty \exp\left[-\sqrt{s} \, u^2\right] \, du, \\ &= \frac{e^{-2\sqrt{s}}}{\sqrt{\pi}} \int_{-\infty}^\infty \exp\left[-v^2\right] \, dv, \qquad \left(v^2 = \sqrt{s} \, u^2\right) \\ &= e^{-2\sqrt{s}}, \end{split}$$

so that $L(h_1^{*n}) = e^{-2n\sqrt{s}}, n = 1, 2, 3, ...$ But

$$\int_0^\infty \frac{n e^{-n^2/x} e^{-sx}}{\sqrt{\pi} \ x^{3/2}} \, dx = \int_0^\infty \frac{e^{-1/x} e^{-sn^2x}}{\sqrt{\pi} \ x^{3/2}} \, dx = e^{-2\sqrt{sn^2}} = e^{-2n\sqrt{s}},$$

so that

$$h_1^{*n}(x) = \frac{ne^{-n^2/x}}{\sqrt{\pi} x^{3/2}},$$

and thus

$$h^{*n}(x) = \frac{ne^{-n^2/x}}{\sqrt{\pi} x^{3/2}}, \quad 0 < x \leq 1; \quad h^{*n}(0) = 0.$$

The space C_0 , considered as a subset of $L^2[0, 1]$, is dense in $L^2[0, 1]$ and $||f||_{C_0} \ge ||f||_{L^2}$. By an application of Müntz' theorem [1, p. 43], $\{(e^{-n^2/x})/(x^{3/2})\}_{n=1}^{\infty}$ is not complete in $L^2[0, 1]$; thus, it is certainly not complete in C_0 , and therefore h does not generate C_0 .

We shall now show that $f \in T$ generates T if and only if $f(0) \neq 0$. To do this we must first consider another class of Banach algebras.

Given a sequence $\lambda = \{\lambda_n\}, \lambda_n > 0$, for all $n, \lambda_1 = 1, \lambda_{n+1}/\lambda_n = \delta_n < 1/n^{\epsilon}$, $\epsilon > 0, \delta_n$ monotone decreasing, let R_{λ} be the algebra of power series $W(z) = \sum_{n=1}^{\infty} a_n z^n$, with $|| W ||_{\lambda} = \sum_{n=1}^{\infty} \lambda_n |a_n| < \infty$. We note that $\lambda_n = \prod_{i=1}^{n-1} \delta_i$. Also, R_{λ} is a radical algebra, so that all elements of R_{λ} have zero as the only point of their spectrum. Our main theorem will be that $W(z) = \sum_{n=1}^{\infty} a_n z^n \in R_{\lambda}$ generates R_{λ} if and only if $a_1 \neq 0$.

Lemma 1.

$$rac{\lambda_{lpha_1t_1+\dots+lpha_st_s+n-j}}{\prod_{k=1}^s {(\lambda_{t_k})^{lpha_k}}} \leqslant rac{\lambda_{n+(l-1)j}}{(\lambda_l)^j}\,,$$

where

$$t_i \ge l, \quad i=1, 2, ..., s, \quad \sum_{l=1}^s \alpha_l = j,$$

and where all of t_i , l, α_i , n, j are positive integers.

Proof. If $t_i = l$, i = 1, 2, ..., s, then we have equality. If we increase t_i by 1, then the ratio of the new left-hand side to the original one is

$$\begin{split} & \Big(\frac{\lambda_{\alpha_1 t_1 + \dots + \alpha_s t_s + \alpha_i + n - j}}{\lambda_{\alpha_i, t_1 + \dots + \alpha_s t_s + n - j}}\Big) \Big(\frac{\lambda_{t_i}}{\lambda_{t_i + 1}}\Big)^{\alpha_i}, \\ &= \frac{\delta_{\alpha_1 t_1 + \dots + \alpha_s t_s + n - j} \cdots \delta_{\alpha_1 t_1 + \dots + \alpha_s t_s + \alpha_i + n - j}}{(\delta_{t_i})^{\alpha_i}} \leqslant 1, \end{split}$$

because δ_n is monotone decreasing. The assertion follows by induction.

LEMMA 2. If $V(z) = \sum_{m=l}^{\infty} a_m z^m$, $||V||_{\lambda} = K$, then $||z^{n-j}V^j||_{\lambda} \leq \frac{K^j \lambda_{n+(l-1)j}}{(\lambda_l)^j}$.

Proof. We can write $V(z) = \sum_{m=l}^{\infty} b_m f_m(z)$, where $b_m = a_m \lambda_m / K$ and $f_m(z) = K z^m / \lambda_m$ so that $\sum_{m=l}^{\infty} |b_m| = 1$ and $||f_m||_{\lambda} = K$, m = l, l + 1, ... Then,

$$z^{n-j}V^{j} = z^{n-j} \sum_{\alpha_{1}+\cdots+\alpha_{s}=j} \frac{j!}{\alpha_{1}!\cdots\alpha_{s}!} b^{\alpha_{1}}_{t_{1}}\cdots b^{\alpha_{s}}_{t_{s}} f^{\alpha_{1}}_{t_{1}}\cdots f^{\alpha_{s}}_{t_{s}}$$
$$= z^{n-j} \sum_{\alpha_{1}+\cdots+\alpha_{s}=j} \frac{j!}{\alpha_{1}!\cdots\alpha_{s}!} b^{\alpha_{1}}_{t_{1}}\cdots b^{\alpha_{s}}_{t_{s}} K^{j} \frac{z^{\alpha_{1}t_{1}+\cdots+\alpha_{s}t_{s}}}{(\lambda_{t_{1}})^{\alpha_{1}}\cdots(\lambda_{t_{s}})^{\alpha_{s}}},$$

and

$$\| z^{n-j} V^j \|_{\lambda} \leq \sum_{\alpha_1 + \dots + \alpha_s = j} \frac{j!}{\alpha_1! \cdots \alpha_s!} \| b_{t_1} \|^{\alpha_1} \cdots \| b_{t_s} \|^{\alpha_s} K^j \frac{\lambda^{\alpha_1 t_1 + \dots + \alpha_s t_s + n-j}}{(\lambda_{t_1})^{\alpha_1} \cdots (\lambda_{t_s})^{\alpha_s}}$$
$$\leq \sum_{\alpha_1 + \dots + \alpha_s = j} \frac{j!}{\alpha_1! \cdots \alpha_s!} \| b_{t_1} \|^{\alpha_1} \cdots \| b_{t_s} \|^{\alpha_s} K^j \frac{\lambda_{n+(l-1)j}}{(\lambda_l)^j}$$
 (by Lemma 1).
$$= \frac{K^j \lambda_{n+(l-1)j}}{(\lambda_l)^j}$$

LEMMA 3. If $W(z) = z + \sum_{m=l}^{\infty} a_m z^m$, $l > 1/\epsilon + 1$, then $||W^n||_{\lambda} < \lambda_n e^{||W||_{\lambda} - 1}$ for $n > (\lambda_l)^{-1/(l-1)\epsilon - 1}$.

Proof. Let $V(z) = \sum_{n=l}^{\infty} a_n z^n$, $||V||_{\lambda} = K$. Then,

$$\| W^{n} \|_{\lambda} = \| (z+V)^{n} \|_{\lambda} = \left\| \sum_{j=0}^{n} \binom{n}{j} z^{n-j} V^{n} \right\|_{\lambda}$$

$$\leq \sum_{j=0}^{n} \binom{n}{j} \| z^{n-j} V^{j} \|_{\lambda}$$

$$\leq \sum_{j=1}^{n} \binom{n}{j} \frac{K^{j} \lambda_{n+(l-1)j}}{(\lambda_{l})^{j}} \quad \text{(by Lemma 2)}$$

$$= \lambda_{n} \sum_{j=0}^{n} \frac{n!}{(n-j)!} \frac{\lambda_{n+(l-1)j}}{(\lambda_{l})^{j} \lambda_{n}} \frac{K^{j}}{j!}$$

$$= \lambda_{n} \sum_{j=0}^{n} \frac{n!}{(n-j)!} \frac{\delta_{n} \cdots \delta_{n+(l-1)j-1}}{(\lambda_{l})^{j}} \frac{K^{j}}{j!}$$

$$< \lambda_{n} \sum_{j=0}^{n} \frac{n!}{(n-j)!} \frac{(\delta_{n})^{(l-1)j}}{(\lambda_{l})^{j}} \frac{K^{j}}{j!}$$

$$= \lambda_{n} \sum_{j=0}^{n} \frac{n!}{n^{(l-1)\epsilon j} (\lambda_{l})^{j}} \frac{K^{j}}{j!}$$

$$= \lambda_{n} \sum_{j=0}^{n} \frac{(n^{1-(l-1)\epsilon})}{\lambda_{l}} \frac{K^{j}}{j!}$$

$$< \lambda_{n} \sum_{j=0}^{n} \frac{K^{j}}{(n-j)!} \quad \text{(for } n > (\lambda_{l}^{-1/(l-1)\epsilon-1})$$

$$< \lambda_{n} e^{K} = \lambda_{n} e^{\|W\|_{\lambda}-1}.$$

LEMMA 4. If $W(z) = z + \sum_{n=l}^{\infty} a_n z^n$ is in R_{λ} , $l > 1/\epsilon + 1$, and $(W^{-1}(z))^m = \sum_{n=m}^{\infty} b_n^{(m)} z^n$, where $W^{-1}(z)$ is the formal inverse of W(z), then $|b_N^{(m)}| < (CN^{2-(m-1)\epsilon})/\lambda_N$, for some constant C.

Proof. Let $W_N(z) = z + \sum_{n=1}^N a_n z^n$, N > m. Since $W_N'(0) \neq 0$, $(W_N^{-1}(z))^m$

is analytic in a small enough disc about the origin, bounded, say, by C'. If we let $(W_N^{-1}(z))^m = \sum_{n=m}^{\infty} c_n^{(m)} z^n$, then $b_i^{(m)} = c_i^{(m)}$, i = m, m + 1,..., N + m - 1. Thus,

$$b_N^{(m)} = c_N^{(m)} = \frac{1}{2\pi i} \int_{C'} \frac{[W_N^{-1}(z)]^m}{z^{N+1}} dz = \frac{1}{2\pi i} \int_{C'} \frac{z^m W_N'(z) dz}{W_N^{N+1}(z)} dz$$

Since $\sum_{n=l}^{\infty} \lambda_n |a_n| < \infty$, one has $|a_n| \leq M/\lambda_n$, for some constant *M*. Now,

$$|W_N(z)| \ge |z + \sum_{n=l}^N a_n z^n| \ge |z| - \sum_{n=l}^N |a_n| |z|^n \ge |z| - M \sum_{n=l}^N \frac{|z|^n}{\lambda_n},$$

and

$$|W_{N}'(z)| = \left|1 + \sum_{n=l}^{N} na_{n}z^{n-1}\right| \leq 1 + M \sum_{n=l}^{N} \frac{n|z|^{n-1}}{\lambda_{n}}.$$

We replace C'' by the circle Γ , about the origin, of radius

$$r = \left(\frac{\lambda_N}{N^2}\right)^{1/(N-1)},$$

because, as we show below, $r - M \sum_{n=1}^{N} (r^n / \lambda_n) > 0$, so that $W_N(z) \neq 0$ inside and on Γ (except at the origin). We then obtain

$$|b_{N}^{(m)}| \leq \frac{1}{2\pi} \int_{C} \frac{|z|^{m} |W_{N}'(z)|}{|W_{N}(z)|^{N+1}} dz \leq \frac{r^{m+1} \left(1 + M \sum_{n=l}^{N} \frac{nr^{n-1}}{\lambda_{n}}\right)}{\left(r - M \sum_{n=l}^{N} \frac{r^{n}}{\lambda_{n}}\right)^{N+1}} = \frac{r^{m-N} \left(1 + M \sum_{n=l}^{N} \frac{nr^{n-1}}{\lambda_{n}}\right)}{\left(1 - M \sum_{n=l}^{N} \frac{r^{n-1}}{\lambda_{n}}\right)^{N+1}}.$$

Now,

$$r = \left(\frac{\lambda_N}{N^2}\right)^{1/(N-1)} \leqslant \left(\frac{1}{N^2(N-1)!^{\epsilon}}\right)^{1/(N-1)}, \quad r^{m-N} = \frac{r^{m-1}}{r^{N-1}} \leqslant \frac{2e^{\epsilon m}N^{2-(m-1)\epsilon}}{\lambda_N},$$

so that

$$r < 2\left(\frac{e}{N}\right)^{\epsilon}$$
, and $r^{l-1} < \frac{(2e^{\epsilon})^{l-1}}{N}$.

By examining the ratio of successive summands of $\sum_{n=1}^{N} (r^{n-1}/\lambda_n)$, we see that the summands decrease first and then increase, so that

$$\begin{split} \sum_{n=l}^{N} \frac{r^{n-1}}{\lambda_n} &= \sum_{n=l}^{2l-2} \frac{r^{n-1}}{\lambda_n} + \sum_{n=2l-1}^{N} \frac{r^{n-1}}{\lambda_n} \\ &\leqslant (l-1) \max\left(\frac{r^{l-1}}{\lambda_l}, \frac{r^{2l-3}}{\lambda_{2l-2}}\right) + (N-2l+2) \max\left(\frac{r^{2l-2}}{\lambda_{2l-1}}, \frac{1}{N^2}\right) \\ &\leqslant (l-1) \max\left[\frac{(2e^{\epsilon})^{l-1}}{N\lambda_l}, \frac{(2e^{\epsilon})^{2l-3}}{N^{2-\epsilon}\lambda_{2l-2}}\right] \\ &\quad + (N-2l+2) \max\left[\frac{(2e^{\epsilon})^{2l-2}}{N^2\lambda_{2l-1}}, \frac{1}{N^2}\right] \\ &\leqslant \frac{C_1}{N}, \quad \text{where} \quad C_1 = \frac{(l-1)(2e^{\epsilon})^{2l-3}}{\lambda_{2l-2}} + \frac{(2e^{\epsilon})^{2l-2}}{\lambda_{2l-1}}. \end{split}$$

Similarly,

$$\sum_{n=l}^{N} \frac{nr^{n-1}}{\lambda_n} \leqslant (N-l+1) \max\left(\frac{lr^{l-1}}{\lambda_l}, \frac{1}{N}\right)$$
$$\leqslant (N-l+1) \max\left[\frac{l(2e^{\epsilon})^{l-1}}{N\lambda_l}, \frac{1}{N}\right]$$
$$\leqslant C_2, \quad \text{where} \quad C_2 = \frac{l(2e^{\epsilon})^{l-1}}{\lambda_l}.$$

Hence,

$$b_N^{(m)} \leqslant \frac{2e^{\epsilon m_N 2 - (m-1)\epsilon} (1 + MC_2)}{\lambda_N \left(1 - \frac{MC_1}{N}\right)^{N+1}} < \frac{C_3 N^{2 - (m-1)\epsilon}}{\lambda_N},$$

where $C_{3} = 4e^{\epsilon m}(1 + MC_{2})e^{MC_{1}}$.

LEMMA 5. $f(z) = \sum_{n=1}^{N} a_n z^n$ generates R_{λ} if $a_1 \neq 0$.

Proof. Let D be the closed sub-algebra generated by f. The spectrum of f consists of the point 0 and f^{-1} is analytic at 0 (because $a_1 \neq 0$). Hence $f^{-1}(f(z))$ belongs to D (2, p. 78]. But $f^{-1}(f(z)) = z$ and z generates R_{λ} ; thus f(z) generates R_{λ} .

THEOREM 1. $W(z) = \sum_{n=1}^{\infty} a_n z^n \in R_{\lambda}$ generates R_{λ} if and only if $a_1 \neq 0$. *Proof.* If $a_1 = 0$, then all powers of W also have zero as their coefficient of z and W does not generate R_{λ} . If $a_1 \neq 0$, we can assume without loss of generality that $a_1 = 1$. Clearly, $W_1(z) = z + \sum_{n=l}^{\infty} c_n z^n$, $l = [1/\epsilon] + 2$, is generated by W(z), for some $\{c_n\}_{n=l}^{\infty}$. Consider $(W_1^{-1}(z))^m = \sum_{n=m}^{\infty} b_n^{(m)} z^n$, $m \ge 4/\epsilon + 1$, and let $f_N(z) = \sum_{n=m}^{N} b_n^{(m)} z^n$. Then

$$\begin{split} \| [W_1^{-1}(W_1(z))]^m - f_N(W_1(z)) \|_{\lambda} \\ &= \left\| \sum_{n=N+1}^{\infty} b_n^{(m)} W_1^n(z) \right\|_{\lambda} \\ &\leqslant \sum_{n=N+1}^{\infty} \| b_n^{(m)} \| \| W_1^n(z) \|_{\lambda} \\ &< C_3 \sum_{n=N+1}^{\infty} \frac{n^{2-(m-1)\epsilon}}{\lambda_n} \lambda_n e^{\|W_1\|_{\lambda} - 1} \qquad (\text{for } N > (\lambda_l)^{-1/(l-1)\epsilon - 1}) \\ &\leqslant C_3 e^{\|W_1\|_{\lambda} - 1} \sum_{n=N+1}^{\infty} \frac{1}{n^2} \,, \end{split}$$

which can be made arbitrarily small, so that $f_N(W_1(z) \to [W_1^{-1}(W_1(z))]^m = z^m$. Hence, $\{z^m\}_{m=\lfloor 4/\epsilon \rfloor+2}^{\infty}$ is generated by W_1 and therefore, by W. Thus, $W(z) - \sum_{n=\lfloor 4/\epsilon \rfloor+2}^{\infty} a_n z^n = z + \sum_{n=2}^{\lfloor 4/\epsilon \rfloor+1} a_n z^n$ is generated by W. But $z + \sum_{n=2}^{\lfloor 4/\epsilon \rfloor+1} a_n z^n$ generates R_{λ} , by Lemma 5, so that W does the same. This completes the proof.

Let R be the algebra obtained by setting $\lambda_n = 1/(n-1)!$

THEOREM 2. $f(x) = \sum_{n=0}^{\infty} a_n x^n \in T$ generates T if and only if $f(0) \neq 0$.

Proof. If $f(x) = \sum_{n=0}^{\infty} a_n x^n \in T$, then $\sum_{n=0}^{\infty} n! a_n z^{n+1} \in R$. Consider the transformation L from T into R, given by $L(\sum_{n=0}^{\infty} a_n x^n) = \sum_{n=0}^{\infty} n! a_n z^{n+1}$. We have $L(x^n) = n! z^{n+1} = \int_0^{\infty} x^n e^{-x/z} dx$, so that $L(x^n)$ equals the Laplace transform of $x^n, 0 \leq x < \infty$. Hence, if P and Q are polynomials, L(P * Q) = L(P) L(Q) and, since, $L(\sum_{n=0}^{\infty} a_n x^n) = \lim_{N \to \infty} L(\sum_{n=0}^{N} a_n x^n)$ (in R), it follows that L(f * g) = L(f) L(g), for all $f, g \in T$. Furthermore, $||L(\sum_{n=0}^{\infty} a_n x^n)||_R = \sum_{n=0}^{\infty} |a_n| = ||\sum_{n=0}^{\infty} a_n x^n||_T$, so that L is an isometric isomorphism from T onto R. By Theorem 1, $L(f) = \sum_{n=1}^{\infty} a_{n-1}(n-1)! z^n$ generates R if and only if $a_0 \neq 0$, so that f generates T if and only if $a_0 \neq 0$, i.e., if and only if $f(0) \neq 0$.

References

- 1. N. I. ACHIESER, "Theory of Approximation." Ungar, New York, 1956.
- 2. LYNN H. LOOMIS, "An Introduction to Abstract Harmonic Analysis." Van Nostrand, Princeton, New Jersey, 1953.